GROWTH IN THE VALLEY, 1895-1920

In the Beginning

Because of its unique geological attributes, the Red River Valley was selected as one of two locations for consideration of an experiment station in Minnesota. Polk County's senator at the time was Peter M. Ringdal of Crookston. Ringdal introduced a bill for the establishment of an experiment station to be located near Crookston. At the same time, House of Representatives member M.E. Craig, introduced a bill to establish an experiment station in the northeastern part of the State. The two legislators worked together, coming up with two identical bills that included both stations in the Senate and the House bills. The 1895 legislature appropriated $30,000 to procure equipment and to conduct two sub-experiment farms, one at Crookston and one at Grand Rapids.

James J. Hill, president of the railroad company involved in rail construction in the Red River Basin, was a powerful economic and political figure in the late 19th and early 20th century of Minnesota's history. He gave a conditional gift of 476.61 acres of land for use by the University of Minnesota to establish an experiment farm to learn to farm the soggy sod and later to teach residents of the Valley what was learned.

Some of the administrators of the University of Minnesota were not in favor of starting a unit at Crookston. They argued that all the research necessary could be accomplished at the main University. Despite changes in University leadership, the railroad leadership, and in organizational bureaucracy, a clear title to the land was obtained by the University in 1939 after several years of sustained effort led by Superintendents A.M. Dowell and T.M. McCall. This initial land for the Northwest Experiment Station was three-fourths of Section 19, Crookston Township.

The Early Years

Torger A. Hoverstad, first Northwest Experiment Station superintendent, arrived with his family, furniture and a few farm implements in a couple of boxcars. Hoverstad was instrumental in the preliminary organization of the Northwest Experiment Station. During his years with the Station he introduced better selections of several crop varieties, including 'Red Fife' and 'Haynes Bluestem' wheats, Minnesota No. 13 corn, alfalfa, white blossom sweet clover, bromegrass, and red and mammoth clovers. He helped organize the Red River Valley Dairymen's Association and became its first president in 1903. Hoverstad planted the main windbreak at the Station in 1896-97 and he directed much effort toward drainage of the land. Polk County and the City of Crookston each gave $1,000 to help construct an open drainage ditch that was used until 1909, when the tile and surface drainage system was completed.

Hoverstad gave tree planting his first priority, early pictures of the campus can confirm the "bare" feeling of the prairies which the first settlers confronted. The large groves protecting the campus were all planned and mainly planted during this era. Hoverstad reported that the tree seedlings were "muddied in" and that the workmen had to wear high boots due to the high water level. The 1896 plantings included evergreens such as Colorado blue, Black Hills and white spruce, Scotch pine and balsam fir. Many of the large Colorado blue spruce, Black Hills and white spruce, now standing on the campus were transplanted to their present locations in the years of 1912-14.

Not all trees survived. Many trees failed on alkali spots. Superintendent Hoverstad reported that some 10,000 young white and Norway pine and spruce transplants, planted as a cooperative project with the U.S. Department of Agriculture, failed.

1895 saw a "bumper" wheat crop in the Red River Valley. Travelers reported oceans of wheat. The railroads hauled wheat as fast as they could. Elevators were filled and piles of grain were in the streets of villages and towns. This was the last bumper crop of grain for many years.

The first experimental grain plots in 1896 were 4' x 4'. A large number of varieties were tested that year. The new Minnesota variety No. 163 (Glyndon) was found to be superior to the commonly grown varieties, Fife and Haynes Bluestem.
One of the first “Visitors Days” put on by the new experiment farm. A demonstration of the horsepower and equipment that were used for road building and tillage operations. Also shown are a pair of driving horses and a buggy.

New Leaders – Expanding Roles

William Robertson succeeded Hoverstad as station superintendent and was the first school superintendent. Robertson was with the station-school from 1905 until his death in January 1910. He established the curriculum of academic and vocational training for the new school. He secured staff and faculty to implement the school programs. His greatest contribution to the Experiment Station was considered to be the installation of a surface drainage system, a system which also improved the campus area.

Field plots continued under Robertson. In wheats, Minnesota Nos. 163 and 169 and some hybrids of Fife and Bluestem dominated the trials.

Poultry was an important farm commodity in those years, how else could you feed the local preacher when he came for Sunday dinner. The Station maintained flocks consisting of Barred and White Plymouth Rocks, White Leghorns, Light Bramas, Cornish Indian Games, Piken ducks, African geese and Bronze turkeys. As early as 1902 a poultry specialist was hired at the Station, C.S. Greene, being the first. He was followed by C.E. Brown who published a bulletin on poultry work dealing with poultry housing, feeding and breeding for high egg production.

Animal husbandry was also a factor in the early Station research. Shropshire sheep, large Yorkshire and Duroc Jersey swine and Galloway cattle were on the farm in 1902. By 1910, the dairy cattle herd consisted chiefly of the Holstein, Milking Shorthorn and Guernsey breeds with both purebred and grade animals in each breed.

Conrad Selvig was appointed by the University Board of Regents to succeed Robertson. He served as school-station superintendent from 1910 through 1927. He worked toward building the school, with developmental plans to allow for future needs. He organized the Red River Valley Winter Shows in 1910 and served as president through 1927. His leadership in drainage matters led to the organization of the Red Lake River Conservancy Project.

The Experiment Station continued to test and introduce new and better varieties, including the introduction of ‘Grimm’ alfalfa to the Valley. Livestock research continued to grow under Selvig’s leadership. He was elected to U.S. Congress from the Ninth District in 1926 and served three terms.
Elevating grader constructing an open ditch in 1909. The average speed of the machine was about 1.3 miles per hour for a 10 hour working day. Station buildings are visible in the background.

Staff members were added in Selvig's tenure to continue the crops and animal husbandry research. From 1910-1920, most of the grade animals were culled from the herds. The milking strain of Shorthorn cattle was dropped with preference given to the beef type Shorthorns. The dairy herd was improved through use of good sires.

Drainage Impacts Early Agricultural Research

Much of the original gifted land obtained from James J. Hill was termed "a duckpond" by local critics, the need for drainage was obvious. The problem was universal in northwestern Minnesota. Funds were justified by the Minnesota State Legislature because if the University could solve that problem, the area farmers would benefit as well from the experience. John T. Stewart, U.S. Department of Agriculture Drainage Engineer, who did the topographical survey stated, "the farm lies in the lowest part of the drainage basin, a good outlet must be constructed."

A capstan ditch was constructed in 1903 which carried the water in a northwesterly direction to a coulee which was later to become the outlet course of county ditch No. 60. County ditch No. 60 was constructed in 1907 to give the Experiment Station an outlet at the northwest corner of the farm to a depth of seven feet. A more complete system of surface and tile drainage was completed in 1909. The complete project, after 1909, was followed immediately by the first sustained agricultural research work in agronomy, soils, and horticulture as well as in farm crop production to support the livestock.

Years of Growth

The Northwest School of Agriculture’s (NWSA) early days could be considered "years of growth." More staff was added, more buildings were constructed, programs were added, enrollment increased. The first graduating class was in 1909, by 1911 an alumni association was organized. The object was to "bind more closely the graduates who have been closely associated during the school course . . . and to make known to the public the splendid advantages offered by the Northwest School of Agriculture, especially to the young men and women of northwestern Minnesota."

Thomas M. McCall joined the staff of the Northwest School in 1911 as instructor and station horticulturist. He took a brief sabbatical leave in 1929-30 to return to Iowa State College, Des Moines, to earn his Master of Science degree. Early horticultural plantings had not fared well, most died. After the drainage projects were completed and T.M. McCall took charge of horticulture at the Station, a wide variety of plantings took shape.

By 1913, there were six school buildings. Stephens Hall and Robertson Hall were dormitories; the Sidney M. Owen building was for farm engineering and dairy classes; the
first classroom building, the Home Economics Building, was for "domestic science." There was the James J. Hill Building for classes and the new administration building, named in honor of David L. Kiehle, former State Superintendent of Public Instruction, Regent and University professor. Four buildings were formally dedicated on December 5, 1912—Owen, Kiehle, Robertson and Hill. James J. Hill was present for the dedication and attended a "farm style" dinner after the ceremony.

Hill wrote in the 1913 NWSA annual, "Every institution engaged in giving instruction in modern farm methods is not only contributing to the advancement of an industry which must always be the foundation of national prosperity and stability, but it is a guidepost pointing the way to what must and will be, for a majority of the young people of our country, the happiest and, if rightly followed, the most successful occupation."

At the dedication ceremonies, Hill told Superintendent Selvig, "Come to see me at my office, and I'll give this school a building or provide a fund for some unmet need." Selvig thanked him and noted he had a long memory. Said Hill, "That's all right young man; remember it." Selvig did, but shortly after their meeting, the railroad magnate died. Wrote the young superintendent, "He left a legacy for northwestern Minnesota even if fate intervened in regard to that promised building."

Capable agricultural research personnel were just coming on the national scene. Attracting these agriculturally trained men and their families to an undeveloped section of soggy sod in northwestern Minnesota was a major challenge for superintendents. Providing family type housing on the scene rather quickly brought capable research personnel in soils, agronomy, and livestock, establishing the earliest outstate interdisciplinary agricultural research and extension team in the State of Minnesota.

Summer practicums were established procedures by 1912. The theory was, students would attend school for six months and pursue a "practicum," or as it was later known, a "home project," at home or on the farm for the other six months of the year.

Following the advice of University President George E. Vincent, that there be "no blind alleys in our schools," the Northwest School offered a four-year advanced course, which focused totally on academic studies.

A central heating plant was constructed in 1913, and by 1914 construction was begun on a second boys' dormitory. In addition to Superintendent Selvig, there were 15 faculty members employed at the school by 1914. Selvig noted, "I sought the best teachers and Station staff members procurable. Most of them were young, but they were well prepared. They grew in stature with the years. To them is due full credit. The work was hard. During the early years salaries were low."

School activities continued to expand. Music, public speaking, debating, young men's and young women's Christian activities, athletics and other activities were added. For six months, the school was "home" to the young students, and attempts were made to provide enjoyable and broadening experiences for them.

Experiment Station Influence

The Experiment Station made its influence known in the area. An annual visiting day at the Station became popular with farmers and their families. Research was done concerning black stem rust of wheat, alfalfa growing and livestock production. According to Selvig, the 1860 census reported 1,932 head of cattle in Valley counties. By 1910, the number stood at 337,587. Selvig was awed by the Valley soil and the agricultural potential. "What a heritage," he pronounced. "Do you know the potent powers of this soil and the wonders it can perform?"

The Farmers' Week events continued to gain support, but it was decided that attendance would be facilitated by moving the programs to the city. Winter weather was un-

James J. Hill speaking at Crookston.
predictable, and it was necessary to go from the campus
to Crookston in horse-drawn conveyances. Crookston's
Grand Opera House was secured for the meetings, but
soon crowds strained the building's capacity. Moves be­
gan to acquire a building that could accommodate the "Red
River Valley Farm Crops Shows," as it came to be called.

The Red River Valley Livestock Association was orga­
nized and incorporated. Shares were sold for $10 to ob­
tain funds for constructing a building in downtown Crook­
ston for $15,000. The building was to house farm crops
exhibits and to have a livestock judging room, as well as
provide quarters for livestock in the basement area. The
first building was ready for the 1919 show. In 1920, Annex
A was added and Annex B was ready for the 1921 shows.
According to Selvig, there were more than 2,600 stock­
holders of the Red River Valley Livestock Association.

So, on all fronts, growth took place. The 1916-17 school
year showed an enrollment of 160 students in the regular
three-year program. Added to that were 47 enrollees for
the junior shortcourse, 145 for the summer training for ru­
rnal teachers, and 1,824 for the farmers’ short course. In
one year, more than 2,000 persons had—in one way or
another—been served by the Northwest School of Agricul­
ture.

The First War Years

The work at the Northwest Experiment Station grew and
developed to meet the special needs of this section of the
State. During 1917 the Station assisted in carrying out the
government program for increased production. The north­
western group of counties organized their wartime program
early enough to influence the farm plans for the first year
of the war, and in 1918 a record crop was produced.

Orville Kiser, animal hus­
bandman, first arrived at the
Northwest School on January
1, 1917. Kiser had earned a
B.S. degree in agriculture from
Kansas Agricultural College.
He served as an extension
agent and also taught at the
school. He left and served as
Nobles county agent during
the war, then returned to
Crookston to head the dairy
and animal science depart­
ment at the school and station.

During this period the value of straw sheds were dem­
strated for the overwintering of beef cattle. These sheds
were utilized on the Station into the late forties, "too long".
many Station critics said of Superintendent McCall. The wartime economy was one reason, but jokesters on the farm crew called one “McCall Hall”, resentful no doubt in having to clean up an impossible situation of posts, straw and manure.

Beef feeding trials were conducted in this era as well, most work being directed at feeding crops that could be grown in the Red River Valley.

Arnold M. Foker joined the Northwest School staff in 1917. A graduate of the University of Minnesota, he had taught at Warren, Minnesota, high school two years and also at Alexandria, Minnesota, in an industrial arts position. He was later appointed head of the department of agricultural engineering and the superintendent of buildings and grounds at the station-school.

Alvin M. Pilkey joined the staff in this era as poultry husbandman. He was a graduate of the University of Manitoba and also taught arithmetic in the school system.

Martinus Stenseth, graduate of the Northwest School, Lt. U.S. Aviation Corps, was named an official "Ace" in 1919, having downed six German planes.

By 1919, a formal blueprint for the development of the campus had been approved. Formal gardens, special plantings of many kinds, memorial drive, sidewalks and roads were known. Prior to this period the farm buildings which had once encroached upon the campus were moved east.

October 5, 1920, the War Memorial at the campus entrance was unveiled during dedication day when several special events took place.

R. W. Thatcher, dean of the department of agriculture, congratulated Northwest School students. “To be able to go ahead steadily toward a desired goal, even with such distractions as epidemics of disease and changes from wartime to peacetime condition, is an achievement which promises well for your future success as individuals and as a school.”

Selvig’s words from more than 80 years ago—"The farmers’ purchasing power is much below what it was in 1914. His farm debt has increased and he is unable, under present conditions, to reduce it. He buys in an artificially created market and is compelled to sell nearly all his products on a world market. Either the protective system must be extended to the farmer or it must be modified. Transportation, taxation, credit problems, land tenure and honesty in labeling food products are other problems that cry for amendment and change in the interests of agriculture... agricultural well-being is of fundamental importance to the cities, to the industrial East, if you please, as well as to us out here in the producing regions.”